Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet
نویسندگان
چکیده
Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.
منابع مشابه
A systems view of cellular reprogramming.
modulation to improve reprogramming outcomes. Daley, Collins and colleagues illustrated this function in the transcription factor–mediated conversion of murine B cells to macrophages. Finally, they used CellNet to argue that previously reported murine iHep cells should be reclassified as endodermal progenitors rather than as liver cells. As the researchers recognize, there are many potential co...
متن کاملEngineering Cell Fate: The Roles of iPSC Transcription Factors, Chemicals, Barriers and Enhancing Factors in Reprogramming and Transdifferentiation
Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome mo...
متن کاملCellNet: Network Biology Applied to Stem Cell Engineering
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypoth...
متن کاملLiquid Fuel Production from Synthesis Gas via Fermentation Process in a Continuous Tank Bioreactor (CSTBR) Using Clostridium ljungdahlii
The potential bioconversion of synthesis gas (syngas) to fuels and chemicals by microbial cell has attracted considerable attention in past decade. The feasibility of enhancing syngas bioconversion to ethanol and acetate using Clostridium ljungdahlii in a continuous tank bioreactor (CSTBR), kinetics and mass transfer coefficient of carbon monoxide (CO) utilization were evaluated. Two different ...
متن کاملTrichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium
The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 158 شماره
صفحات -
تاریخ انتشار 2014